Support Vector Machine Tutorial

Wu, Shih-Hung (Ph.D)
Dept. of CSIE, CYUT

References

- Book
- Duda etal. "pattern classification", Ch5
- Slides
- Moore, Andrew (CMU)
- http://www.cs.cmu.edu/~awm/tutorials
- Lin, Chih-Jen (NTU)
- http://www.csie.ntu.edu.tw/~cjlin/talks.html

5.11 Support Vector Machines

- Popular, easy-to-use, available
- Support Vector
- Data is mapped to a high dimension
- SVM training
- Example 2
- SVM for the XOR Problem

Optimal hyperplane

FIGURE 5.19. Training a support vector machine consists of finding the optimal hyperplane, that is, the one with the maximum distance from the nearest training patterns. The support vectors are those (nearest) patterns, a distance b from the hyperplane. The three support vectors are shown as solid dots. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright (C) 2001 by John Wiley \& Sons, Inc.

Mapping to higher dimensional space

The XOR problem in the original $x_{1}-x_{2}$ feature space is shown at the left; the two red patterns are in category ω_{1} and the two black ones in ω_{2}. These four training patterns x are mapped to a six-dimensional space by $1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{1} x_{2}, x_{1}^{2}$ and x_{2}^{2}. In this space, the optimal hyperplane is found to be $g\left(x_{1}, x_{2}\right)=x_{1} x_{2}=0$ and the margin is $b=\sqrt{2}$. A two-dimensional projection of this space is shown at the right. The hyperplanes through the support vectors are $\sqrt{2} x_{1} x_{2}= \pm 1$, and correspond to the hyperbolas $x_{1} x_{2}= \pm 1$ in the original feature space, as shown.

SVM introduction

Example from Andrew Moor's slides

- denotes -1

Linear Classifiers

- denotes +
$\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{x}-b)$
- denotes -1

How would you classify this data?

Specifying a line and margin

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w}, \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x} ; \boldsymbol{w}, \boldsymbol{x}+b=-1\}$

Classify as.. +1	if	$\boldsymbol{w}, \boldsymbol{x}+b>=1$
	-1	if
	$\boldsymbol{w}, \boldsymbol{x}+b<=-1$	
	Universe explodes	if

How to deal with Noisy Data?

Learning Maximum Margin with Noise

- ε_{2} of points to their correct zones
- Compute the margin width Assume R datapoints, each $\left(\boldsymbol{x}_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic How many constraints will we optimization criterion be? have? R
Minimize

$$
\frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{k=1}^{R} \varepsilon_{k}
$$ What should they be?

$\boldsymbol{w}, \boldsymbol{x}_{k}+b>=1-\varepsilon_{k}$ if $y_{k}=1$
w. $\boldsymbol{x}_{k}+b<=-1+\varepsilon_{k}$ if $y_{k}=-1$

Mapping to a higher Dimensional space

Suppose we're in 1-dimension

What would

SVMs do with this data?

Suppose we're in 1-dimension

Not a big surprise

Harder 1-dimensional dataset

That's wiped the smirk off SVM's face.

What can be done about this?

Harder 1-dimensional dataset

- Remember how permitting nonlinear basis functions made linear regression so much nicer?

Let's permit them here too

$$
\mathbf{z}_{k}=\left(x_{k}, x_{k}^{2}\right)
$$

Harder 1-dimensional dataset

Remember how permitting nonlinear basis functions made linear regression so much nicer?

Let's permit them here too

$$
\mathbf{z}_{k}=\left(x_{k}, x_{k}^{2}\right)
$$

Common SVM basis functions

$\boldsymbol{z}_{k}=\left(\right.$ polynomial terms of \boldsymbol{x}_{k} of degree 1 to q)
$\boldsymbol{z}_{k}=\left(\right.$ radial basis functions of $\left.\boldsymbol{x}_{k}\right)$

$$
\mathbf{z}_{k}[j]=\varphi_{j}\left(\mathbf{x}_{k}\right)=\text { KernelFn }\left(\frac{\left|\mathbf{x}_{k}-\mathbf{c}_{j}\right|}{\mathrm{KW}}\right)
$$

$\boldsymbol{z}_{k}=\left(\right.$ sigmoid functions of $\left.\boldsymbol{x}_{k}\right)$
This is sensible.
Is that the end of the story?
No...there's one more trick!

SVM tool

Example from Lin, Chih-Jen's slides

Outline

- Support vector classification
- Two practical example
- Support vector regression
- Discussion and conclusions

Data Classification

- Given training data in different classes (labels known) Predict test data (labels unknown)
- Examples
- Handwritten digits recognition
- Spam filtering
- Text classification
- Prediction of signal peptide in human secretory proteins
- Training and testing
- Methods:
- Nearest Neighbor
- Neural Networks
- Decision Tree
- Support vector machines: a new method
- Becoming more and more popular

Why Support Vector Machines

- Existing methods: Nearest neighbor, Neural networks, decision trees.
- SVM: a new one
- In my opinion, after careful data pre-processing Appropriately use NN or SVM \Rightarrow similar accuracy
- But, users may not use them properly
- The chance of SVM
- Easier for users to appropriately use it
- The ambition: replacing NN on some applications

Support Vector Classification

- Training vectors: $\mathrm{x}_{i}, i=1, \ldots, l$
- Consider a simple case with two classes: Define a vector y

$$
y_{i}=\left\{\begin{aligned}
1 & \text { if } \mathbf{x}_{i} \text { in class 1 } \\
-1 & \text { if } \mathbf{x}_{i} \text { in class 2 }
\end{aligned}\right.
$$

- A hyperplane which separates all data

- A separating hyperplane: $\mathbf{w}^{T} \mathbf{x}+b=0$

$$
\begin{array}{ll}
\left(\mathbf{w}^{T} \mathbf{x}_{i}\right)+b>0 & \text { if } y_{i}=1 \\
\left(\mathbf{w}^{T} \mathbf{x}_{i}\right)+b<0 & \text { if } y_{i}=-1
\end{array}
$$

- Decision function $f(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$, \mathbf{x} : test data Variables: wand b : Need to know coefficients of a plane
Many possible choices of wand b
- Select \mathbf{w}, b with the maximal margin. Maximal distance between $\mathbf{w}^{T} \mathbf{x}+b= \pm 1$

$$
\begin{aligned}
\left(\mathbf{w}^{T} \mathbf{x}_{i}\right)+b \geq 1 & \text { if } y_{i}=1 \\
\left(\mathbf{w}^{T} \mathbf{x}_{i}\right)+b \leq-1 & \text { if } y_{i}=-1
\end{aligned}
$$

- Distance between $\mathbf{w}^{T} \mathbf{x}+b=1$ and -1 :

$$
2 /\|\mathbf{w}\|=2 / \sqrt{\mathbf{w}^{T} \mathbf{w}}
$$

- $\max 2 /\|\mathbf{w}\| \equiv \min \mathbf{w}^{T} \mathbf{w} / 2$

$$
\min _{\mathbf{w}, b} \quad \frac{1}{2} \mathbf{w}^{T} \mathbf{w}
$$

subject to $\quad y_{i}\left(\left(\mathbf{w}^{T} \mathbf{x}_{i}\right)+b\right) \geq 1$,

$$
i=1, \ldots, l .
$$

Higher Dimensional Feature Spaces

- Earlier we tried to find a linear separating hyperplane Data may not be linear separable
- Non-separable case: allow training errors

$$
\begin{array}{ll}
\min _{\mathbf{w}, b, \boldsymbol{\xi}} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{l} \xi_{i} \\
& y_{i}\left(\left(\mathbf{w}^{T} \mathbf{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \\
& \xi_{i} \geq 0, i=1, \ldots, l
\end{array}
$$

- $\xi_{i}>1, \mathbf{x}_{i}$ not on the correct side of the separating plane
- C : large penalty parameter, most ξ_{i} are zero
- Nonlinear case: linear separable in other spaces ?

- Higher dimensional (maybe infinite) feature space

$$
\phi(\mathrm{x})=\left(\phi_{1}(\mathrm{x}), \phi_{2}(\mathrm{x}), \ldots\right) .
$$

- Example: $\mathbf{x} \in R^{3}, \phi(\mathbf{x}) \in R^{10}$

$$
\begin{aligned}
\phi(\mathbf{x})= & \left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{3}, x_{1}^{2},\right. \\
& \left.x_{2}^{2}, x_{3}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1} x_{3}, \sqrt{2} x_{2} x_{3}\right)
\end{aligned}
$$

- A standard problem [Cortes and Vapnik, 1995]:

$$
\min _{\mathbf{w}, b, \boldsymbol{\xi}} \quad \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{l} \xi_{i}
$$

subject to $\quad y_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0, i=1, \ldots, l$.

Finding the Decision Function

- w : a vector in a high dimensional space \Rightarrow maybe infinite variables
- The dual problem

$$
\begin{aligned}
\min _{\alpha} & \frac{1}{2} \boldsymbol{\alpha}^{T} Q \boldsymbol{\alpha}-\mathbf{e}^{T} \boldsymbol{\alpha} \\
\text { subject to } & 0 \leq \alpha_{i} \leq C, i=1, \ldots, l \\
& \mathbf{y}^{T} \boldsymbol{\alpha}=0
\end{aligned}
$$

where $Q_{i j}=y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$ and $\mathrm{e}=[1, \ldots, 1]^{T}$

$$
\mathbf{w}=\sum_{i=1}^{l} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)
$$

- Primal and dual : optimization theory. Not trivial. Infinite dimensional programming.
- A finite problem: \#variables = \#training data
- $Q_{i j}=y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$ needs a closed form

Efficient calculation of high dimensional inner products Kernel trick, $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$

- Example: $\mathbf{x}_{i} \in R^{3}, \phi\left(\mathbf{x}_{i}\right) \in R^{10}$

$$
\begin{aligned}
\phi\left(\mathbf{x}_{i}\right)= & \left(1, \sqrt{2}\left(x_{i}\right)_{1}, \sqrt{2}\left(x_{i}\right)_{2}, \sqrt{2}\left(x_{i}\right)_{3},\left(x_{i}\right)_{1}^{2},\right. \\
& \left.\left(x_{i}\right)_{2}^{2},\left(x_{i}\right)_{3}^{2}, \sqrt{2}\left(x_{i}\right)_{1}\left(x_{i}\right)_{2}, \sqrt{2}\left(x_{i}\right)_{1}\left(x_{i}\right)_{3}, \sqrt{2}\left(x_{i}\right)_{2}\left(x_{i}\right)_{3}\right)
\end{aligned}
$$

Then $\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)^{2}$.

- Popular methods: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=$

$$
\begin{gathered}
e^{-\gamma\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}, \text { (Radial Basis Function) } \\
\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j} / a+b\right)^{d} \text { (Polynomial kernel) }
\end{gathered}
$$

Kernel Tricks

- Kernel: $K(\mathbf{x}, \mathbf{y})=\phi(\mathbf{x})^{T} \phi(\mathbf{y})$
- No need to explicitly know $\phi(\mathbf{x})$
- Common kernels $K\left(\mathbf{x}_{i}, \mathrm{x}_{j}\right)=$

$$
\begin{gathered}
e^{-\gamma\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}, \text { (Radial Basis Function) } \\
\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j} / a+b\right)^{d} \text { (Polynomial kernel) }
\end{gathered}
$$

- They can be inner product in infinite dimensional space
- Assume $x \in R^{1}$ and $\gamma>0$.

$$
\begin{aligned}
& e^{-\gamma\left\|x_{i}-x_{j}\right\|^{2}}=e^{-\gamma\left(x_{i}-x_{j}\right)^{2}}=e^{-\gamma x_{i}^{2}+2 \gamma x_{i} x_{j}-\gamma x_{j}^{2}} \\
= & e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}}\left(1+\frac{2 \gamma x_{i} x_{j}}{1!}+\frac{\left(2 \gamma x_{i} x_{j}\right)^{2}}{2!}+\frac{\left(2 \gamma x_{i} x_{j}\right)^{3}}{3!}\right. \\
= & e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}}\left(1 \cdot 1+\sqrt{\frac{2 \gamma}{1!}} x_{i} \cdot \sqrt{\frac{2 \gamma}{1!}} x_{j}+\sqrt{\frac{(2 \gamma)^{2}}{2!}} x_{i}^{2} \cdot \sqrt{\frac{(2 \gamma)^{2}}{2!}} x_{j}^{2}\right. \\
& \left.\quad+\sqrt{\frac{(2 \gamma)^{3}}{3!}} x_{i}^{3} \cdot \sqrt{\frac{(2 \gamma)^{3}}{3!}} x_{j}^{3}+\cdots\right) \\
= & \phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right),
\end{aligned}
$$

where

$$
\phi(x)=e^{-\gamma x^{2}}\left[1, \sqrt{\frac{2 \gamma}{1!}} x, \sqrt{\frac{(2 \gamma)^{2}}{2!}} x^{2}, \sqrt{\frac{(2 \gamma)^{3}}{3!}} x^{3}, \cdots\right]^{T} .
$$

Decision function

- w: maybe an infinite vector
- At optimum

$$
\mathbf{w}=\sum_{i=1}^{l} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)
$$

- Decision function

$$
\begin{aligned}
& \mathbf{w}^{T} \phi(\mathbf{x})+b \\
= & \sum_{i=1}^{l} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)^{T} \phi(\mathbf{x})+b \\
= & \sum_{i=1}^{l} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
\end{aligned}
$$

No need to have w

- >0 : 1st class, <0 : 2nd class
- Only $\phi\left(\mathbf{x}_{i}\right)$ of $\alpha_{i}>0$ used
$\alpha_{i}>0 \Rightarrow$ support vectors

Support Vectors: More Important Data

A Toy Example

- Two training data in R^{1} :

- What is the separating hyperplane ?

Primal Problem

- $\mathbf{x}_{1}=0, \mathbf{x}_{2}=1$ with $\mathbf{y}=[-1,1]^{T}$.
- Primal problem

$$
\min _{w, b} \quad \frac{1}{2} w^{2}
$$

$$
\begin{array}{ll}
\text { subject to } & w \cdot 1+b \geq 1 \\
& -1(w \cdot 0+b) \geq 1
\end{array}
$$

- $-b \geq 1$ and $w \geq 1-b \geq 2$.
- For any (w, b) satisfying two inequality constraints

$$
w \geq 2
$$

- We are minimizing $\frac{1}{2} w^{2}$

The smallest possibility is $w=2$.

- $(w, b)=(2,-1)$ is the optimal solution.
- The separating hyperplane $2 x-1=0$ In the middle of the two training data:

Dual Problem

- Formula derived before

$$
\min _{\boldsymbol{\alpha} \in R^{l}} \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)-\sum_{i=1}^{l} \alpha_{i}
$$

subject to $\quad \alpha_{i} \geq 0, i=1, \ldots, l$, and $\sum_{i=1}^{l} \alpha_{i} y_{i}=0$

- Get the objective function

$$
\begin{aligned}
\mathbf{x}_{1}^{T} \mathbf{x}_{1} & =0, \mathbf{x}_{1}^{T} \mathbf{x}_{2}
\end{aligned}=0
$$

- Objective function

$$
\begin{aligned}
& \frac{1}{2} \alpha_{1}^{2}-\left(\alpha_{1}+\alpha_{2}\right) \\
= & \frac{1}{2}\left[\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]-\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] .
\end{aligned}
$$

- Constraints

$$
\alpha_{1}-\alpha_{2}=0,0 \leq \alpha_{1}, 0 \leq \alpha_{2}
$$

- $\alpha_{2}=\alpha_{1}$ to the objective function,

$$
\frac{1}{2} \alpha_{1}^{2}-2 \alpha_{2}
$$

- Smallest value at $\alpha_{1}=2$.
α_{2} as well
- If smallest value <0
clipped to 0

Let Us Try A Practical Example

- A problem from astroparticle physics

```
1.0 1:2.617300e+01 2:5.886700e+01 3:-1.894697e-01 4:1.251225e+02
1.0 1:5.707397e+01 2:2.214040e+02 3:8.607959e-02 4:1.229114e+02
1.0 1:1.725900e+01 2:1.734360e+02 3:-1.298053e-01 4:1.250318e+02
1.0 1:2.177940e+01 2:1.249531e+02 3:1.538853e-01 4:1.527150e+02
1.0 1:9.133997e+01 2:2.935699e+02 3:1.423918e-01 4:1.605402e+02
1.0 1:5.537500e+01 2:1.792220e+02 3:1.654953e-01 4:1.112273e+02
1.0 1:2.956200e+01 2:1.913570e+02 3:9.901439e-02 4:1.034076e+02
```

- Training and testing sets available: 3,089 and 4,000
- Data format is an issue

SVM software: LIBSVM

- http://www.csie.ntu.edu.tw/~cjlin/libsvm
- Now one of the most used SVM software
- Installation
- On Unix:

Download zip file and make

- On Windows:
- Download zip file and make
- c:nmake -f Makefile.win
- Windows binaries included in the package

Usage of LIBSVM

- Training

Usage: svm-train [options] training_set_file options:
-s svm_type : set type of SVM (default 0)
0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR
-t kernel_type : set type of kernel function

- Testing

Usage: svm-predict test_file model_file outp

Training and Testing

- Training
\$./svm-train train. 1
......*
optimization finished, \#iter = 6131 $\mathrm{nu}=0.606144$
obj $=-1061.528899$, rho $=-0.495258$
$\mathrm{nSV}=3053, \mathrm{nBSV}=724$
Total nSV $=3053$
- Testing
\$./svm-predict test.1 train.1.model test.1.predict
Accuracy $=66.925 \%(2677 / 4000)$

What does this Output Mean

- obj: the optimal objective value of the dual SVM
- rho: $-b$ in the decision function
- nSV and nBSV: number of support vectors and bounded support vectors
(i.e., $\alpha_{i}=C$).
- nu-svm is a somewhat equivalent form of C-SVM where C is replaced by ν.

Why this Fails

- After training, nearly 100% support vectors
- Training and testing accuracy different
\$./svm-predict train. 1 train.1.model o Accuracy $=99.7734 \%$ (3082/3089)
- Most kernel elements:

$$
K_{i j} \begin{cases}=1 & \text { if } i=j \\ \rightarrow 0 & \text { if } i \neq j\end{cases}
$$

Data Scaling

- Without scaling

Attributes in greater numeric ranges may dominate

- Example:

	height	sex
x_{1}	150	F
x_{2}	180	M
x_{3}	185	M

and

$$
y_{1}=0, y_{2}=1, y_{3}=1 .
$$

- The separating hyperplane

- Decision strongly depends on the first attribute
- What if the second is more important
- Linearly scale the first to $[0,1]$ by:

$$
\frac{\text { 1st attribute }-150}{185-150}
$$

- New points and separating hyperplane

- Transformed to the original space,

- The second attribute plays a role

After Data Scaling

- A common mistake
\$./svm-scale -1 -1 -u 1 train. $1>$ train.1.scale
\$./svm-scale -1 -1 -u 1 test. $1>$ test.1.scale
- Same factor on training and testing
\$./svm-scale -s range1 train.1 > train.1.sca
\$./svm-scale -r range1 test. $1>$ test.1.scale
\$./svm-train train.1.scale
\$./svm-predict test.1.scale train.1.scale.mo test.1.predict
\rightarrow Accuracy $=96.15 \%$
- We store the scaling factor used in training and apply them for testing set

More on Training

- Train scaled data and then prediction

```
$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.mo
        test.1.predict
        Accuracy = 96.15%
```

- Training accuracy now is
\$./svm-predict train.1.scale train.1.scale.m Accuracy $=96.439 \%$ (2979/3089) (classificati
- Default parameter
- $C=1, \gamma=0.25$

Different Parameters

- If we use $C=20, \gamma=400$
\$./svm-train -c 20 -g 400 train.1.scale
./svm-predict train.1.scale train.1.scale.mo
Accuracy = 100\% (3089/3089) (classification)
- 100% training accuracy but
\$./svm-predict test.1.scale train.1.scale.mo Accuracy = 82.7\% (3308/4000) (classification
- Very bad test accuracy
- Overfitting happens

Overfitting and Underfitting

- When training and predicting a data, we should
- Avoid underfitting: small training error
- Avoid overfitting: small testing error

Overfitting

- In theory

You can easily achieve 100\% training accuracy

- This is useless
- Surprisingly

Many application papers did this

Parameter Selection

- Is very important
- Now parameters are
C, kernel parameters
- Example:

$$
\begin{gathered}
\gamma \text { of } e^{-\gamma\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}} \\
a, b, d \text { of }\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j} / a+b\right)^{d}
\end{gathered}
$$

- How to select them? So performance better?

Performance Evaluation

- Training errors not important; only test errors count
- l training data, $\mathrm{x}_{i} \in R^{n}, y_{i} \in\{+1,-1\}, i=1, \ldots, l, \mathrm{a}$ learning machine:

$$
x \rightarrow f(\mathbf{x}, \alpha), f(\mathbf{x}, \alpha)=1 \text { or }-1 .
$$

Different α : different machines

- The expected test error (generalized error)

$$
R(\alpha)=\int \frac{1}{2}|y-f(\mathbf{x}, \alpha)| d P(\mathbf{x}, y)
$$

y : class of x (i.e. 1 or -1)

- $P(\mathrm{x}, y)$ unknown, empirical risk (training error):

$$
R_{e m p}(\alpha)=\frac{1}{2 l} \sum_{i=1}^{l}\left|y_{i}-f\left(\mathbf{x}_{i}, \alpha\right)\right|
$$

- $\frac{1}{2}\left|y_{i}-f\left(\mathbf{x}_{i}, \alpha\right)\right|$: loss, choose $0 \leq \eta \leq 1$, with probability at least $1-\eta$:

$$
R(\alpha) \leq R_{\text {emp }}(\alpha)+\text { another term }
$$

- A good pattern recognition method: minimize both terms at the same time
- $R_{\text {emp }}(\alpha) \rightarrow 0$
another term \rightarrow large

Performance Evaluation (Cont.)

- In practice

Available data \Rightarrow training and validation

- Train the training
- Test the validation
- k-fold cross validation:
- Data randomly separated to k groups.
- Each time $k-1$ as training and one as testing

CV and Test Accuracy

- If we select parameters so that CV is the highest,
- Does CV represent future test accuracy ?
- Slightly different
- If we have enough parameters, we can achieve 100% CV as well
- e.g. more parameters than \# of training data
- But test accuracy may be different
- So
- Available data with class labels

。 \Rightarrow training, validation, testing

- Using CV on training + validation
- Predict testing with the best parameters from CV

A Simple Procedure

1. Conduct simple scaling on the data
2. Consider RBF kernel $K(x, y)=e^{-\gamma\|x-y\|^{2}}$
3. Use cross-validation to find the best parameter C and γ
4. Use the best C and γ to train the whole training set
5. Test

- Best C and γ by training $k-1$ and the whole ? In theory, a minor difference
No problem in practice

Parameter Selection Procedure in LIBSVM

- grid search + CV

```
$./grid.py train.1 train.1.scale
[local] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)
[local] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)
```

- grid.py: a python script in the python directory of LIBSVM
- Easy parallelization on a cluster

```
$./grid.py train.1 train.1.scale
[linux1] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)
[linux7] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)
```


Parallel Parameter Selection

- Specify machine names in grid.py
telnet_workers = []
ssh_workers $=\left[' l i n u x 1^{\prime}, ' l i n u x 1^{\prime}, ' l i n u x 2^{\prime}\right.$,
'linux3']
nr_local_worker = 1
linux1: more powerful or two CPUs
- A simple centralized control

Load balancing not a problem

- We can use other tools

Too simple so not consider them

Contour of Parameter Selection

d2

$\lg (\mathrm{C})$
98.8
98.6
98.4
98.2
97.8
97.6
97.4
97.2

97

Ig(gamma)

Simple script in LIBSVM

- easy.py: a script for dummies
\$python easy.py train. 1 test. 1
Scaling training data...
Cross validation...
Best $c=2.0, ~ g=2.0$
Training...
Scaling testing data...
Testing...
Accuracy $=96.875 \%(3875 / 4000)$

Example: Engine Misfire Detection

Problem Description

- First problem of IJCNN Challenge 2001, data from Ford
- Given time series length $T=50,000$
- The k th data

$$
x_{1}(k), x_{2}(k), x_{3}(k), x_{4}(k), x_{5}(k), y(k)
$$

- $y(k)= \pm 1$: output, affected only by $x_{1}(k), \ldots, x_{4}(k)$
- $x_{5}(k)=1, k$ th data considered for evaluating accuracy
- 50,000 training data, 100,000 testing data (in two sets)
- Past and future information may affect $y(k)$
- $x_{1}(k)$: periodically nine 0s, one 1 , nine 0 s, one 1 , and so on.
- Example:

0.000000	-0.999991	0.169769	0.000000	1.00000
0.000000	-0.659538	0.169769	0.0002921 .00000	
0.000000	-0.660738	0.169128	-0.020372	1.0000
1.000000	-0.660307	0.169128	0.007305	1.00000
0.000000	-0.660159	0.169525	0.0025199	1.00000
0.000000	-0.659091	0.169525	0.0181981 .00000	
0.000000	-0.660532	0.169525	-0.024526	1.0000
0.000000	-0.659798	0.169525	0.012458	1.00000

- $x_{4}(k)$ more important

Background: Engine Misfire Detection

- How engine works

Air-fuel mixture injected to cylinder intact, compression, combustion, exhaustion

- Engine misfire: a substantial fraction of a cylinder's air-fuel mixture fails to ignite
- Frequent misfires: pollutants and costly replacement
- On-board detection:

Engine crankshaft rational dynamics with a position sensor

- Training data: from some expensive experimental environment

Encoding Schemes

- For SVM: each data is a vector
- $x_{1}(k)$: periodically nine 0 s, one 1 , nine 0 s, one $1, \ldots$
- 10 binary attributes
$x_{1}(k-5), \ldots, x_{1}(k+4)$ for the k th data
- $x_{1}(k)$: an integer in 1 to 10
- Which one is better
- We think 10 binaries better for SVM
- $x_{4}(k)$ more important

Including $x_{4}(k-5), \ldots, x_{4}(k+4)$ for the k th data

- Each training data: 22 attributes

Training SVM

- Selecting parameters; generating a good model for prediction
- RBF kernel $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)=e^{-\gamma\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}$
- Two parameters: γ and C
- Five-fold cross validation on 50,000 data Data randomly separated to five groups. Each time four as training and one as testing
- Use $C=2^{4}, \gamma=2^{2}$ and train 50,000 data for the final model
d2

98.8
98.6
98.4
98.2
97.8 97.6
97.4
97.2

97

Ig(gamma)

- Test set 1: 656 errors, Test set 2: 637 errors
- About 3000 support vectors of 50,000 training data A good case for SVM
- This is just the outline. There are other details.
- It is essential to do model selection.

Dual Problems for Other Formulas

- So we think that for any optimization problem

Lagrangian dual exists

- This is wrong
- Remember we calculate

$$
\min \frac{1}{2} \mathbf{w}^{T} \mathbf{w}-\sum_{i=1}^{l} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)-1\right]\right.
$$

by

$$
\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, b, \boldsymbol{\alpha})=0
$$

- Note that

$$
f^{\prime}(x)=0 \Leftrightarrow x \text { minimum }
$$

is wrong

- Example

$$
f(x)=x^{3}, x=0 \text { not minimum }
$$

- This function must satisfy certain conditions
- Some papers wrongly derived the dual of their new formulations without checking conditions
- $[2,2]^{T}$ satisfies constraints $0 \leq \alpha_{1}$ and $0 \leq \alpha_{2}$

It is optimal

- Primal-dual relation

$$
\begin{aligned}
w & =y_{1} \alpha_{1} x_{1}+y_{2} \alpha_{2} x_{2} \\
& =1 \cdot 2 \cdot 1+(-1) \cdot 2 \cdot 0 \\
& =2
\end{aligned}
$$

- The same as solving the primal

Multi-class Classification

- k classes
- One-against-all: Train k binary SVMs:

$$
\begin{array}{lll}
\text { 1st class } & \text { vs. } & (2-k) \text { th class } \\
\text { 2nd class } & \text { vs. } & (1,3-k) \text { th class }
\end{array}
$$

- k decision functions

$$
\begin{gathered}
\left(\mathbf{w}^{1}\right)^{T} \phi(\mathbf{x})+b_{1} \\
\vdots \\
\left(\mathbf{w}^{k}\right)^{T} \phi(\mathbf{x})+b_{k}
\end{gathered}
$$

- Select the index with the largest $\left(\mathbf{w}^{j}\right)^{T} \phi(\mathbf{x})+b_{j}$

Multi-class Classification (Cont.)

- One-against-one: train $k(k-1) / 2$ binary SVMs
$(1,2),(1,3), \ldots,(1, k),(2,3),(2,4), \ldots,(k-1, k)$
Select the one with the largest vote
- This is the method used by LIBSVM
- Try a 4-class problem

6 binary SVMs
\$libsvm-2.5/svm-train bsvm-2.05/vehicle.scale optimization finished, \#iter = 173
obj $=-142.552559$, rho $=0.748453$
$\mathrm{nSV}=194$, nBSV = 183
optimization finished, \#iter = 330 obj $=-149.912202$, rho $=-0.786410$ $n S V=227, n B S V=217$
optimization finished, \#iter = 169 obj $=-139.655613$, rho $=0.998277$
$\mathrm{nSV}=186$, $\mathrm{nBSV}=177$
optimization finished, \#iter = 268
obj $=-185.161735$, rho $=-0.674739$
$\mathrm{nSV}=253, \mathrm{nBSV}=244$
optimization finished, \#iter = 477
obj $=-378.264371$, rho $=0.177314$
$\mathrm{nSV}=405, \mathrm{nBSV}=394$
optimization finished, \#iter = 337 obj $=-186.182860$, rho $=1.104943$
$n S V=261, n B S V=247$
Total nSV $=739$

- There are many other methods

A comparison in [Hsu and Lin, 2002]

- For a software

We select one which is generally good but not always the best

- Finally I chose 1 vs. 1

Similar accuracy to others
Shortest training
A bit longer on testing than 1 vs. all

Why Shorter Training Time

- 1 vs. 1
$k(k-1) / 2$ problems, each $2 l / k$ data on average
- 1 vs. all
k problems, each l data
- If solving the optimization problem: polynomial of the size with degree d
- Their complexities

$$
\frac{k(k-1)}{2} O\left(\left(\frac{2 l}{k}\right)^{d}\right) \text { vs. } k O\left(l^{d}\right)
$$

Conclusions

- Dealing with data is interesting
especially if you get good accuracy
- Some basic understandings are essential when applying methods
e.g. the importance of validation
- No method is the best for all data

Deep understanding of one or two methods very helpful

